Top Ten Security Risks

Risk Discription Exploitability Prevalence Detectability Impacts How to Prevent
Preventing injection requires keeping data separate from commands and queries.
* The preferred option is to use a safe API, which avoids the use of the interpreter entirely or provides a parameterized interface, or
Injection flaws occur when untrusted data is migrate to use Object Relational Mapping Tools (ORMs). Note: Even when parameterized, stored procedures can still introduce SQL
selnt e p——— injection if PL/SQL or T-SQL concatenates queries and data, or executes hostile data with EXECUTE IMMEDIATE or exec().
a1 Injection tricking it into e?(ecutin Enintended ! Eas Common Eas Severe * Use positive or "whitelist" server-side input validation. This is not a complete defense as many applications require special characters,
g comminds or accessin gdata without proer 4 Y such as text areas or APIs for mobile applications.
Juthorization e (A * For any residual dynamic queries, escape special characters using the specific escape syntax for that interpreter.
. Note: SQL structure such as table names, column names, and so on cannot be escaped, and thus user-supplied structure
names are dangerous. This is a common issue in report-writing software.
* Use LIMIT and other SQL controls within queries to prevent mass disclosure of records in case of SQL injection
Where possible, implement multi-factor authentication to prevent automated, credential stuffing, brute force, and stolen credential re-
use attacks.
* Do not ship or deploy with any default credentials, particularly for admin users.
¢ Implement weak-password checks, such as testing new or changed passwords against a list of the top 10000 worst
passwords.
Authentication and session management are * Align password length, complexity and rotation policies with NIST 800-63 B's guidelines in section 5.1.1 for Memorized
Broken
2 Authentication often implemented incorrectly allowing Easy Common Average Severe [Secrets or other modern, evidence based password policies.
attackers to assume other users' identities Ensure registration, credential recovery, and API pathways are hardened against account enumeration attacks by using the same
messages for all outcomes.
o Limit or increasingly delay failed login attempts. Log all failures and alert administrators when credential stuffing, brute force, or other
attacks are detected.
* Use a server-side, secure, built-in session manager that generates a new random session ID with high entropy after
login. Session IDs should not be in the URL, be securely stored and invalidated after logout, idle, and absolute timeouts.
Do the following, at a minimum, and consult the references:
o Classify data processed, stored, or transmitted by an application. Identify which data is sensitive according to privacy laws, regulatory
requirements, or business needs.
* Apply controls as per the classification.
Applications and APIs that don't properly * Don’t store sensitive data unnecessarily. Discard it as soon as possible or use PCI DSS compliant tokenization or even truncation. Data
protect sensitive data allow attackers to steal that is not retained cannot be stolen.
3 Sensitive Data it to commit credit card fraud, identity theft Average Widesoread Average Severe * Make sure to encrypt all sensitive data at rest.
Exposure or other crimes. Sensitive data requires E R E Ensure up-to-date and strong standard algorithms, protocols, and keys are in place; use proper key management.
special precautions when exchanged with the * Encrypt all data in transit with secure protocols such as TLS with perfect forward secrecy (PFS) ciphers, cipher prioritization by the
browser. server, and secure parameters. Enforce encryption using directives like HTTP Strict Transport Security (HSTS).
« Disable caching for responses that contain sensitive data.
e Store passwords using strong adaptive and salted hashing functions with a work factor (delay factor), such as Argon2, scrypt, berypt,
or PBKDF2.
« Verify independently the effectiveness of configuration and settings.
Developer training is essential to identify and mitigate XXE. Besides that, preventing XXE requires:
Many older or boorly configured XML ¢ Whenever possible, use less complex data formats such as JSON, and avoiding serialization of sensitive data.
rochsors evaruateyexternil - Patch or upgrade all XML processors and libraries in use by the application or on the underlying operating system. Use dependency
2 . Y checkers. Update SOAP to SOAP 1.2 or higher.
references within XML documents. External " X L q R . Yoy
4 XML External entities can be used to disclose internal files Average Common Eas Severe Disable XML external entity and DTD processing in all XML parsers in the application, as per the OWASP Cheat Sheet 'XXE Prevention'.
Entities using the file URI handler, internal file shares e v * Implement positive ("whitelisting") server-side input validation, filtering, or sanitization to prevent hostile data within XML
intergnal ort scannin, re;nute code ' TGRS, B, @F (Tt
executioi and denialg'of A o Verify that XML or XSL file upload functionality validates incoming XML using XSD validation or similar.
! * SAST tools can help detect XXE in source code, although manual code review is the best alternative in large, complex applications with
many integrations. If these controls are not possible, consider using virtual patching, API security gateways, or Web Application
Access control is only effective if enforced in trusted server-side code or server-less API, where the attacker cannot modify the access
control check or metadata.
Restrictions on what authenticated users are ¢ With the exception of public resources, deny by default.
allowed to do are often not properly ¢ Implement access control mechanisms once and re-use them throughout the application, including minimizing CORS usage.
Broken Access enforced. Attackers can exploit these flaws to * Model access controls should enforce record ownership, rather than accepting that the user can create, read, update, or delete any
5 Control access unauthorized functionality and/or Average Common Average Severe [record.
data, such as access other users' accounts, ¢ Unique application business limit requirements should be enforced by domain models.
view sensitive files, modify other users’ data, « Disable web server directory listing and ensure file metadata (e.g. .git) and backup files are not present within web roots.
change access rights, etc. Log access control failures, alert admins when appropriate (e.g. repeated failures).
 Rate limit API and controller access to minimize the harm from automated attack tooling.
* JWT tokens should be invalidated on the server after logout. Developers and QA staff s

Page 1 of 2

Top Ten Security Risks

Risk Discription Exploitability Prevalence Detectability Impacts How to Prevent
Secure installation processes should be implemented, including:
Security misconfiguration is the most * A repeatable hardening process that makes it fast and easy to deploy another environment that is properly locked down.
commonly seen issue. This is commonly a Development, QA, and production environments should all be configured identically, with different credentials used in each
result of insecure default configurations, environment. This process should be automated to minimize the effort required to setup a new secure environment.
incomplete or ad hoc configurations, open ¢ A minimal platform without any unnecessary features, components, documentation, and samples. Remove or do not install unused
Securit cloud storage, misconfigured HTTP headers, features and frameworks.
6 Miscon‘:i uration and verbose error messages containing Easy Widespread Easy Moderate |e A task to review and update the configurations appropriate to all security notes, updates and patches as part of the patch
e sensitive information. Not only must all management process (see A9:2017-Using Components with Known Vulnerabilities). In particular, review cloud storage permissions (e.g.
operating systems, frameworks, libraries, and S3 bucket permissions).
applications be securely configured, but they * A segmented application architecture that provides effective, secure separation between components or tenants, with segmentation,
must be patched and upgraded in a timely containerization, or cloud security groups.
fashion » Sending security directives to clients, e.g. Security Headers.
* An automated process to verify the effectiveness of the configurations and settings in all environments.
A Preventing XSS requires separation of untrusted data from active browser content. This can be achieved by:
XSS flaws occur whenever an application X . X . P
. . Using frameworks that automatically escape XSS by design, such as the latest Ruby on Rails, React JS. Learn the limitations of each
includes untrusted data in a new web page
without proper validation or escaping, or framework's XSS protection and appropriately handle the use cases which are not covered.
undates an existing web page with usér * Escaping untrusted HTTP request data based on the context in the HTML output (body, attribute, JavaScript, CSS, or URL) will resolve
p . . 8 pag Reflected and Stored XSS vulnerabilities. The OWASP Cheat Sheet 'XSS Prevention' has details on the required data escaping techniques.
. . supplied data using a browser API that can . . L . e
7 |Cross-Site Scripting . Easy Widespread Easy Moderate |* Applying context-sensitive encoding when modifying the browser document on the client side acts against DOM XSS. When this
create HTML or JavaScript. XSS allows X - . . N . y R
N o, cannot be avoided, similar context sensitive escaping techniques can be applied to browser APIs as described in the OWASP Cheat
attackers to execute scripts in the victim’s . L
browser which can hijack user sessions, Sheet 'DOM based XSS Prevention'.
.) R . Enabling a Content Security Policy (CSP) is a defense-in-depth mitigating control against XSS. It is effective if no other vulnerabilities
deface web sites, or redirect the user to . . L . - - - .
malicious sites exist that would allow placing malicious code via local file includes (e.g. path traversal overwrites or vulnerable libraries from permitted
: content delivery networks).
The only safe architectural pattern is not to accept serialized objects from untrusted sources or to use serialization mediums that only
permit primitive data types. If that is not possible, consider one of more of the following:
Insecure deserialization often leads to * Implementing integrity checks such as digital signatures on any serialized objects to prevent hostile object creation or data tampering.
remote code execution. Even if Enforcing strict type constraints during deserialization before object creation as the code typically expects a definable set of classes.
Insecure deserialization flaws do not result in remote o Bypasses to this technique have been demonstrated, so reliance solely on this is not advisable.
8 o X Difficult Common Average Severe K . o - . "
Deserialization code execution, they can be used to perform ¢ Isolating and running code that deserializes in low privilege environments when possible.
attacks, including replay attacks, injection Logging deserialization exceptions and failures, such as where the incoming type is not the expected type, or the deserialization
attacks, and privilege escalation attacks. throws exceptions.
 Restricting or monitoring incoming and outgoing network connectivity from containers or servers that deserialize.
* Monitoring deserialization, alerting if a user deserializes constantly
There should be a patch management process in place to:
" N * Remove unused dependencies, unnecessary features, components, files, and documentation.
Components, such as libraries, frameworks, . . .) . . " . .
. Continuously inventory the versions of both client-side and server-side components (e.g. frameworks, libraries) and their
and other software modules, run with the . . " . L . . "
- _ dependencies using tools like versions, DependencyCheck, retire.js, etc. Continuously monitor sources like CVE and NVD for
same privileges as the application. If a I e " B B
. . R vulnerabilities in the components. Use software composition analysis tools to automate the process. Subscribe to email alerts for
Using Components [vulnerable component is exploited, such an . .
X - X . security vulnerabilities related to components you use.
9 |with Know attack can facilitate serious data loss or Average Widespread Average Moderate . L . . . " .
- . . * Only obtain components from official sources over secure links. Prefer signed packages to reduce the chance of including a modified,
Vulnerabilites server takeover. Applications and APIs using L
. . malicious component.
components with known vulnerabilities may . . . L . . -
R I * Monitor for libraries and components that are unmaintained or do not create security patches for older versions. If patching is not
undermine application defenses and enable o
Various attacks and impacts possible, consider deploying a virtual patch to monitor, detect, or protect against the discovered issue. Every organization must ensure
pacts. that there is an ongoing plan for monitoring, triaging, and applying updates or configuration changes for the lifetime of the application
or portfolio.
- . o As per the risk of the data stored or processed by the application:
Insufficient logging and monitoring, coupled) . L A . . - . .
. . X . 3 i * Ensure all login, access control failures, and server-side input validation failures can be logged with sufficient user context to identify
with missing or ineffective integration with . b it q o .
o suspicious or malicious accounts, and held for sufficient time to allow delayed forensic analysis.
incident response, allows attackers to further
L . . Ensure that logs are generated in a format that can be easily consumed by a centralized log management solutions.
- . attack systems, maintain persistence, pivot to . . o et err T) " i
Insufficient Logging . e Ensure high-value transactions have an audit trail with integrity controls to prevent tampering or deletion, such as append-only
10 L more systems, and tamper, extract, or Average Widespread Difficult Moderate -
and Monitoring . . database tables or similar.
destroy data. Most breach studies show time . . - . - L . . .
. . o Establish effective monitoring and alerting such that suspicious activities are detected and responded to in a timely fashion.
to detect a breach is over 200 days, typically . L .
. o Establish or adopt an incident response and recovery plan, such as NIST 800-61 rev 2 or later. There are commercial and open source
detected by external parties rather than — X L X)
. L application protection frameworks such as OWASP AppSensor, web application firewalls such as ModSecurity with the OWASP
internal processes or monitoring. . .) .
ModSecurity Core Rule Set, and log correlation software with custom dashboards and alerting.

Page 2 of 2

